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This work is an experimental study of the motion and deformation of a bioartificial
capsule flowing in a tube of 4 mm diameter. The capsules, initially designed for
medical applications, are droplets of salt water surrounded by a thin polymeric
membrane. They are immersed in a very viscous Newtonian silicone oil that flows
through a tube in the Stokes regime. The properties of the capsules were carefully
determined. Two previous experimental papers were devoted to their characterization
by osmotic swelling and compression between two plates. The present work also
provides a series of tests that allows an accurate definition of the experimental
model under investigation. The capsules are buoyant and initially quasi-spherical.
Nevertheless, buoyancy and small departures from sphericity are shown to have no
significant effects, provided the flowing velocity is large enough for the viscous stress
to become predominant. The capsules are also initially slightly over-inflated, but
there is no mass transfer through the membrane during the present experiments.
Their volume therefore remains constant. The membrane can be described as an
elastic two-dimensional material, the elastic moduli of which are independent of the
deformation. Far from the tube ends, the capsule reaches a steady state that depends
on two parameters: the capillary number, Ca; and the ratio of the radius of the capsule
to that of the tube, a/R. The capillary number, which compares the hydrodynamic
stresses to the elastic tensions in the membrane, was varied between 0 and 0.125.
The radius ratio, which measures the magnitude of the confinement, was varied from
0.75 to 0.95. In the range investigated, the membrane material always remains in the
elastic domain. At fixed a/R, the capsule is stretched in the axial direction when Ca is
increased. The process of deformation involves two main stages. At small to moderate
Ca, the lateral dimension of the capsule decreases whereas its axial length increases.
The capsule is rounded at both ends, but the curvature of its rear decreases as Ca
increases. At large Ca, the rear buckles inward. Then, the negative rear curvature goes
on decreasing whereas the lateral dimension of the capsule reaches a constant value.
On the other hand, increasing a/R promotes the deformation: the process remains
qualitatively the same, but the different stages are attained for smaller values of Ca.
Comparisons with available numerical simulations show that the results are strongly
dependent on the properties of the capsules.

† Author to whom correspondence should be addressed. risso@imft.fr.
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1. Introduction
There are many situations that require the transport and delivery of a given

quantity of an active substance at a precise time and location. Because it is either
fragile and must be protected or toxic and must not be released into the environment,
the substance has to be isolated. The living cell constitutes a solution to this problem.
Based on the same principle, artificial capsules are increasingly used in various
domains such as medicine, cosmetics and agriculture. Like living cells, artificial
capsules are made of a deformable membrane that separates the inner fluid, which
contains the active substances, from the outer one. (Hereinafter, the word capsule will
refer to both living cells and artificial capsules.) There are two ways of ensuring the
release of encapsulated substances, the membrane may either rupture or be specifically
permeable to certain molecules. The study of capsules involves different scientific
fields. Physics, biology and chemistry are, of course, crucial for the determination
of the physical properties of the membrane as well as their biological compatibility.
In particular, many works have been devoted to the mechanical properties of either
living cells (see Mohandas & Evans 1994; Smith et al. 2000 and references therein)
or synthetic capsules (Edwards-Lévy & Lévy 1999; Disher et al. 2002 and references
therein). On the other hand, coupled with membrane mechanics, the fluid dynamics
control the deformation and the motion of the capsules.

Capsules often have to flow in small vessels in order to bring the active substance
up to the location where it has to be released. In these situations, the capsule ex-
periences strong deformation resulting from complex fluid–structure interactions.
Especially motivated by blood micro-circulation (see Skalak, Özkaya & Skalak 1989
and references therein), numerous works have been devoted to the study of capsules
in various flows. On the one hand, theoretical works assume a particular constitutive
law for the membrane, a given initial shape for the capsule and a specific model for
the mass transfer between the inner and outer media. Studies of the deformation of
a capsule in different basic unbounded shear flows were initiated by Barthès-Biesel
(1980) who calculated the small deformations of a capsule suspended in a simple shear
flow. Studies of capsules flowing in narrow channels were first addressed by using
lubrication theory (see Secomb et al. 1986). Now these situations can be solved numeri-
cally by using boundary integral methods. For unbounded flow, see Ramanujan &
Pozrikidis (1998), Diaz, Pelekasis & Barthès-Biesel (2000), Pozrikidis (2001), Lac et al.
(2004) and references therein. For a capsule in a narrow tube, simulations have
been performed by Quéguiner & Barthès-Biesel (1997), Diaz (2001) and Diaz &
Barthès-Biesel (2002).

On the other hand, if we except qualitative descriptions of red blood cells flowing in
micro-vessels, experimental investigations of a capsule immersed in a flow are rare. As
far as we know, the most advanced study was by Chang & Olbricht (1993a, b). They
studied the deformation of a synthetic capsule in extensional and simple shear flows.
The elastic moduli of the membrane were obtained from comparisons with small-
deformation theory and independent compression experiments. At large strain rate,
they reported plastic deformation and even membrane rupture. They also observed
effects that suggested that the membrane was viscoelastic. Concerning capsules flowing
in narrow tubes, we are aware of only two experimental investigations: the pioneering
work of Lee & Fung (1969) who considered biconcave thin-walled rubber cells; and the
investigation of lipid vesicles by Vitkova, Mader & Podgorski (2004). These two invest-
igations provided interesting descriptions, but cannot be compared with theoretical
predictions since the values of the elastic moduli of the membranes are not provided
by the authors.
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The present work is a new experimental investigation of a bioartificial capsule
flowing in a narrow tube. The diameter of the capsules, which were initially designed
by Lévy & Edwards-Lévy (1996) for medical applications, is 3–4 mm. Such a large size
simplifies manipulations and allows the use of the video acquisition and processing
techniques that we have developed and improved in the context of bubbly flows
over fifteen years. In addition, it makes possible a better characterization of the
capsules properties. However, most of the applications involve capsules of a few
micrometres. With the aim that the results should also be relevant for micro-capsules,
we selected capsules with a very thin membrane, which could be modelled as a two-
dimensional material, and chose an external fluid that ensured that both buoyancy
and inertial effects were negligible. Since the results necessarily depend on capsule
properties, we took great care in their characterization. In a previous work devoted
to the study of the mass transfer through the membrane (Sherwood et al. 2003), the
initial pressure of the inner liquid was determined. This allows the determination
of the reference state of the capsule in absence of flow: even if the capsule takes a
spherical shape, the membrane experiences an initial extension of about 5 %. Risso
& Carin (2004) determined the mechanical law of the membrane from compression
experiments: the membrane is purely elastic with elastic moduli independent of the
deformation. The present work thus provides an accurate description of the behaviour
of capsules of reasonably well-known properties. The capsules are presented in § 2 and
the experimental facility and instrumentation are described in § 3. In § 4, we test the
influence of the small imperfections of the experimental model (slight non-sphericity,
small buoyancy effect, uncertainty in the elastic moduli) and show that the results
depend on two control parameters: the capsule-to-tube radius ratio, a/R, and the
capillary number, Ca = ηextU/K , which compares the hydrodynamics viscous stress
ηextU/a to the elastic one K/a (ηext and U are the viscosity and bulk velocity of the
outer-fluid, K is a membrane elastic modulus). The main results are presented in § 5.
They focus on the steady state reached by the capsule far from the tube ends for
a/R in the range 0.75 − 0.95 and for Ca up to 0.125. In § 6, the present results are
compared with those available in the literature and the roles of membrane rheology
and initial inflation are discussed.

2. The capsules
The membrane of the capsules is made of covalently linked human serum albumin

(HSA) and alginate (Lévy & Edwards-Lévy 1996; Edwards-Lévy & Lévy 1999).
Calcium-alginate gel beads coated with HSA-alginate membranes were originally
designed for medical applications such as hepatocyte encapsulation for bioartificial
liver (Joly et al. 1997) or encapsulation of genetically modified cells for AIDS
treatment (Shinya et al. 1999). The present capsules were first prepared according to
the procedure described by Edwards-Lévy & Lévy (1999). Then, the gel core of the
coated beads was re-liquified by sodium citrate in order to obtain capsules with a
liquid core surrounded by a membrane of cross-linked HSA and alginate. Finally,
a small amount of basilen blue was added to the inner liquid in order to make the
capsules easier to detect by optical means. These capsules are thus constituted of a
thin elastic membrane that enclosed an inner liquid, which is essentially coloured salt
water. Initially, the outer liquid was a 9 g l−1 aqueous solution of sodium chloride.
The properties of the capsules differ slightly from one to another. They are almost
spherical with radii ranging between 1.4 and 1.9 mm. The membrane thickness, h,
was measured by Carin et al. (2003), they are of either 20 or 30 µm depending on
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a small change in the fabrication process. Two previous works were devoted to the
determination of the specific properties of the capsules used here. First, Risso &
Carin (2004) investigated the mechanical properties of the membranes from compres-
sion experiments. The capsule was squeezed between two plates and the relationship
between the compression force and the capsule deformation was recorded. For cap-
sules with such a thin membrane, it was shown that the membrane could be described
as a two-dimensional material with negligible membrane stiffness. Evans & Skalak
(1980) established the general expression of the mechanical constitutive law for an
isotropic homogeneous purely elastic two-dimensional material with negligible bend-
ing stiffness. Noting λ1 and λ2 as the principal extension ratios, the deformation is fully
characterized by the two independent invariants α = λ1λ2 −1 and β = (λ1/λ2 +λ2/λ1)/
2 − 1. In the principal axes, the first component of the tension is

T1 = K α + µ
λ2

1 − λ2
2

2λ2
1λ

2
2

, (2.1)

the second component is obtained by exchanging subscripts 1 and 2. The area dilation
modulus K and the area shear modulus µ are functions of the two invariants α and
β . These two functions, K(α, β) and µ(α, β), define the mechanical constitutive law
of the material. It is worth noting that (2.1) can be used to model either a membrane
consisting of a few layers of molecules or a thin sheet of a three-dimensional material.
In this latter case, the thickness h of the sheet is a function of the deformation. In the
limit of small deformations, e1 = 1/2(λ2

1 − 1) � 1 and e2 = 1/2(λ2
2 − 1) � 1, equation

(2.1) becomes

T1 = K0(e1 + e2) + µ0(e1 − e2), (2.2)

where K0 and µ0 are the limits of the functions K and µ when α and β tend towards
zero. Equation (2.2) is the two-dimensional Hooke’s law, in which the Young’s modulus
is E = 4K0µ0/(K0 + µ0) and the Poisson ratio ν = (K0 − µ0)/(K0 + µ0). When (2.1)
is used to described a thin sheet of a three-dimensional material, the moduli K0

and µ0 of the two-dimensional material can be derived from the Young’s modulus,
E3D , and the Poisson ratio, ν3D , of the three-dimensional material. By making the
membrane thickness h tending towards zero, it is found that 2K0 = hE3D/(1 − ν3D)
and 2µ0 = hE3D/(1+ν3D). When ν3D varies from 0 to 1/2, µ0/K0 varies from 1 to 1/3.
Any two-dimensional material with µ0/K0 in the range 1/3–1 can thus be considered
as the limit of a homogeneous three-dimensional material of vanishing thickness.

The simplest constitutive law, hereinafter denoted ES, is obtained by considering
that the two elastic moduli are independent of the deformation, K = K0 and µ = µ0.
Even if it has more solid physical bases, the (ES) law is, for historical reasons, not
as well known as another model (STZC) proposed by Skalak et al. (1973) for the
description of the red blood cell:

T1 = GSTZC

(
λ1

λ2

(
λ2

1 − 1
)

+ CSTZCλ1λ2

(
λ2

1λ
2
2 − 1

))
. (2.3)

The corresponding expressions of K and µ are complex and their limits in small
deformations are K0 = GSTZC(1 + 2CSTZC) and µ0 = GSTZC. On the other hand, the
two-dimensional Mooney–Rivlin law (MR), which has been derived by considering
an infinite thin sheet of incompressible elastomer, is commonly used,

T1 =
GMR

λ1λ2
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λ2

1 − 1
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2
2

) (
1 − Ψ ′ + λ2

2Ψ
′). (2.4)
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GMR is a surface elastic modulus and Ψ ′ a non-dimensional parameter ranging from
0 to 1. The expressions of K and µ are again very complex, their limits in small
deformations are K0 = 3GMR and µ0 = GMR.

Risso & Carin (2004) compressed capsules of different ages, from fresh capsules
to capsules that have been conserved in their original aqueous solution for more
than one year. Concurrently, they performed numerical simulations of the same
problem by assuming a given constitutive law: ES (constant elastic moduli), MR and
STZC models were tested. Only the ES model provided a good agreement with the
measurements. Assuming that the elastic moduli were independent of the deformation
was thus a good approximation in the range of deformation investigated (α � 1.5).
That was true for all capsules. From the point of view of mechanics, the only visible
effect of the ageing process was to decrease the values of the elastic moduli. Because
the area dilation plays the major role in compression experiments, it was possible
to measure the area dilation modulus K independently of both the values of the
shear modulus and that of a possible small bending modulus. (This latter, even very
small, cannot be zero.) The value of K was thus obtained for each capsule with
fairly good accuracy (±5 %). On the other hand, it could be concluded only that the
shear modulus ranged between K/3 and K , which is consistent with a thin sheet of a
homogeneous three-dimensional material. For the present experiments, we selected 28
capsules of different ages and thicknesses from about two hundred available capsules.
Our purpose was to use the widest possible ranges of elastic modulus and capsule
size. We selected from visual inspection those which have a homogeneous membrane
and the most spherical shape. To characterize the sphericity, we introduced the ratio
S = Lmin/Lmax between the maximal and minimal axes of the capsule (see figure 1).
For the selected capsules, S ranged between 0.86 and 0.97 with an average of 0.94 and
a standard deviation of 0.03. Nine of these capsules were tested in the compression
apparatus and their area dilation modulus K was determined following the procedure
described in Risso & Carin (2004). For the others, the modulus K was determined
by comparing their stationary shapes within the narrow tube with the shapes of the
capsules of known modulus (see § 3). The characteristics of all the capsules used in
the present flow experiments are given in table 1.

Sherwood et al. (2003) studied the isotropic inflation or deflation of a capsule which
was immersed in a sodium chloride aqueous solutions of various concentrations. The
volume of the capsule was able to change because both salt and water can pass through
the membrane. The volume of the capsule was shown to correspond to a Donnan
equilibrium where the inner pressure is larger than the outer pressure because of the
presence of a minute amount of polyelectrolyte molecules that were trapped inside the
capsule. The relationship between the isotropic membrane extension, λi = (1 + α)0.5,
and the concentration C of the outer solution was derived: λi is a decreasing function
of C which starts with a very large value for C =0 and tends asymptotically towards
unity as C tends towards infinity. That means that the capsules are always over-inflated
(λi � 1), but relax towards their natural volume (λi = 1) when the concentration is
increased. In the initial 0.9 g l−1 sodium chloride solution, λi was in the range 1.04–
1.05. The continuous phase used in the present experiment was not salt water but
silicone oil Rhodorsil 47V1000. The capsules were carefully extracted from the original
solution and immersed in the silicone oil. The oil molecules are too large to pass
through the membrane, but water can. A few test capsules were observed during a
long time after they had been moved into the oil. We observed that the water indeed
passed through the membrane and that the capsules shrank very slowly. It took six
weeks to empty the capsules completely. As the present experiments never exceeded
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Figure 1. Schematic of the experimental facility (not to scale): 1. test section; 2. converging
section; 3. diverging section; 4. infusion-syringe pumps; 5. oil reservoir; 6. capsule inlet; 7.
supply tube; 8. oil reservoir; 9. water bath; 10. cryostat; 11. thermocouples; 12. optical box;
13. lights; 14. differential pressure transducer; 15. exit reservoir.

6 h for a given capsule, the capsule volume had no time to change and remained
equal to its initial value in the original sodium chloride solution. The capsule volume
was also measured before, during and after the flow of a capsule inside the tube. The
measured variations were indifferently negative or positive and always less than the
experimental error (±2 %).

3. Experimental facility and instrumentation
The experimental set-up is depicted in figure 1. The test section, 1, consists of a

horizontal glass tube with an inner radius R =2 mm and 220 mm length. A converging
section, 2, precedes the test section and a diverging section, 3, follows it, ensuring
smooth entering and exit of the capsule. The suspending fluid is Silicone oil Rhodorsil
47V1000 which is a Newtonian fluid with a density ρext =970 kg m−3 and a viscosity
ηext = 1.02 Pa s at 21.7 ◦C. It is supplied by means of three infusion-syringe pumps,
4, that provide a constant flow-rate and allow the bulk velocity to vary from 1 to
34 mm s−1. The syringes, which have a content of 50 ml each, are first filled from
the reservoir, 5. A capsule is introduced by the capsule inlet, 6, while the fluid is at
rest. Then, the pumps are switched on and both the fluid and the capsule flow in a
supplying tube, 7, which is immersed in a oil reservoir, 8, of 1.2 l volume. The whole
facility is located in an air-conditioned laboratory (20 ± 1.5 ◦C). Moreover, the supply
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Capsule h (µm) a/R K (Nm−1) S

C1 30 0.78 1.7∗ 0.94
C2 30 0.81 1.8 0.97
C3 30 0.94 1.7∗ 0.93
C4 30 0.74 1.8 0.93
C5 30 0.80 1.8 0.95
C6 30 0.94 1.7 0.96
C7 20 0.78 1.0 0.97
C8 20 0.81 1.1 0.93
C9 20 0.77 0.95∗ 0.97
C10 20 0.79 1.0∗ 0.95
C11 30 0.76 0.55 0.92
C12 30 0.87 0.65 0.87
C13 30 0.77 0.55 0.97
C14 30 0.78 0.77∗ 0.96
C15 30 0.83 0.55∗ 0.91
C16 30 0.80 0.26 0.95
C17 30 0.81 0.26 0.96
C18 30 0.83 0.30∗ 0.93
C19 30 0.85 0.26 0.93
C20 30 0.82 0.32∗ 0.93
C21 30 0.84 0.40∗ 0.93
C22 30 0.75 0.80 0.88
C23 30 0.78 0.85 0.86
C24 30 0.79 0.75 0.93
C25 30 0.80 0.80 0.94
C26 30 0.80 0.80 0.94
C27 30 0.87 0.80 0.95
C28 30 0.78 1.30 0.97

Table 1. Characteristics of the capsules: membrane thickness, h; capsule radius relative to that
of the tube, a/R (± 0.025); membrane area dilation elastic modulus K (± 5%), values marked
with a star were determined from compression experiment (Risso & Carin 2004), others were
obtained from the present experiments (see § 4); spericity ratio, S.

tube, 7, the oil reservoir, 8, and the test section, 1, are immersed in a large water
bath, 9, (520 × 180 × 180 mm3), the temperature of which is controlled by means of
a cryostat, 10. While the capsule travels through the stainless steel tube, 7, the flow
has time to reach a steady sate and the temperatures of both the oil and the capsule
have time to evolve from the laboratory temperature up to the temperature of the test
section. All the experiments are thus conducted at the same temperature (21.7 ± 0.1 ◦C)
which is continuously monitored by means of thermocouples, 11.

The pressure drop over the cross-section is measured by a differential pressure
transducer. Preliminary tests have consisted in measuring the relationship between
the pressure drop and the bulk velocity for six different temperatures ranging from
16 to 26 ◦C. The results have been compared to the Poiseuille law, the value of the
oil viscosity being determined independently for all tested temperatures by means
of a cone-plane rheometer. The discrepancy between the present measurement of U

and the prediction of the Poiseuille law was small; it is maximal for very low flow
rate (± 2.5 % at U = 1 mm s−1), but decreases quickly when U is increased (± 0.2 %
at U = 34 mm s−1). Note that the additional pressure drop caused by the passage
of a capsule in the tube was negligible compared to the linear pressure drop. This
ensured that the flow rate did not change during the entry or the exit of a capsule.
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Figure 2. Contour detection: (a) initial picture, (b) manual erasing, (c) capsule detection,
(d) comparison between detected contour and initial picture.

Unfortunately, this also implied that the additional pressure drop was under the range
of the pressure transducer, 14, and could not be measured. Owing to the limitations
of our instrumentation, the present work will not present results concerning this
quantity.

Glass windows are located on the four lateral sides of the water bath, 9, allowing
full optical access to the test section. An optical box, 12, made of glass and filled
with silicone oil surrounds the test section to minimize optical distortion due to the
curved surface of the tube. Two CCD cameras (Sony XC8500 with 782 × 582 pixels),
equipped with lenses of 60 mm focal length, are used to film the capsule as it flows
inside the test section. Since the lights, 13, are facing the cameras, the pictures show
the capsule shadows (see figure 2). We thus obtain pictures of the projection of the
capsule in the vertical plane (camera 1) and in a horizontal plane (camera 2). Data
acquisition is ensured by the use of two computers. The first one triggers the two
cameras and stores the digital pictures. The second records the temperatures provided
by the thermocouples, 11, and the pressure drop provided by the pressure transducer,
14. The frequency of acquisition f is varied between 5 and 20 Hz depending on the
liquid flow rate. In each case, the exposure time is 0.1 ms, which is short enough to
freeze the capsule. Several successive tests are performed with the same capsule. In a
first series, the two perpendicular cameras are located at the same axial position x.
Simultaneous horizontal and vertical views of the capsule are taken in order to check
the axisymmetry (see § 4). A second series is carried out by setting the two cameras
at different axial locations. This allows us to check that the flow of the capsule has
reached a steady state. For each capsule, the whole range of flow rates was tested
(1 � U � 34 mm s−1). The successive flow rates are tested in increasing order, starting
from U = 0 in order to take a picture of the capsule at rest. Between each test at
constant velocity U , the flow is reversed for the capsule to come back in the supplying
tube and be ready for the next test. Several tests of reproducibility were also carried
out in order to ensure that the capsule membrane remained in the elastic domain.

The capsule contour is detected afterwards by digital video processing in order
to determine the capsule shape and velocity. Before each test, two reference images
have been recorded: the background image in the absence of any capsules; and the
calibration image in the presence of a spherical steel sphere of known size. The
algorithm for contour detection involves five steps. We start with a raw image in 256
grey levels (figure 2a). Two different situations must be distinguished. Whenever the
capsule shape exhibits a concave part, there are hidden parts on the shadowgraph.
In this case, the first step consists in erasing manually the corresponding part of
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the picture (figure 2b). If the capsule is convex, we go directly to the second step
which is the subtraction by the background image. During the third step, the method
of minimum variance is used to threshold the image. The fourth step is the image
binarization, all pixels which have a grey level less than the threshold are set black,
the others are set white (figure 2c). In the fifth step, the frontier between the black
and white regions is detected. The superimposition of the detected contour on the
raw image confirms that the method is reliable (figure 2d). The spatial resolution is
given by the pixel size, which is 0.011 mm. Concurrently, the detection of the tube
boundary was obtained with a similar algorithm, but another threshold. This fixes
the accuracy on the capsule position and on the different dimensions that will be
used to characterize the capsule shape (see § 5). The capsule velocity V is determined
from the displacement of the capsule front between two successive images. Since the
uncertainty on the time is negligible, the uncertainty on the capsule velocity is equal to
the uncertainty on the detection of the capsule contour divided by the sampling time
1/f . We therefore obtain an accuracy that is better for low sampling rates. We obtain
finally that the uncertainty on V increases from ± 0.025 mm s−1 for U = 1 mm s−1 up
to ± 0.10 mm s−1 for U = 34 mm s−1.

4. Problem statement and validation of the experimental model
Our objective is to study the steady state of a capsule made of an initially spherical

drop of a Newtonian fluid surrounded by an impermeable elastic membrane of
negligible thickness immersed in a Newtonian fluid that flows in a narrow tube in the
absence of inertia and buoyancy. This ideal situation depends on the characteristics
of the outer flow and on those of the capsule. The former are the density ρext and
viscosity ηext of the outer fluid, the tube radius R and the bulk velocity U ; the latter
are the density ρint and viscosity ηint of the inner fluid, the capsule radius at rest and
the two elastic moduli of the membrane, K and µ. The ideal problem hence depends
on three dimensionless groups: the capillary number, Ca = ηextU/K , which compares
viscous and elastic forces; the capsule-to-tube radius ratio, a/R, which measures the
geometrical confinement; and the ratio of the elastic moduli, K/µ, which characterizes
the membrane rheology. Note that the viscosity ratio, ηint/ηext, plays no role in the
steady state reached by the capsule in the tube since the membrane shape is then
fixed and the inner liquid is in solid translation.

The characteristics of the outer flow, which could be accurately adjusted by the
experimental set-up described in § 3, are very close to the ideal model. In particular,
we checked that the pressure drop was in agreement with the Poiseuille law and we
investigated a velocity range (1 � U � 34 mm s−1) that ensures that the Reynolds
number, Re = 2URρext/ηext, was always less than 0.15. However, on the other hand,
we saw in § 2 that real capsules differ somewhat from the ideal model in two ways.
First, the density of the inner fluid is slightly larger than that of the outer fluid,
(ρint − ρext)/ρint ≈ 0.03, so the capsule sediments in a fluid at rest. Secondly, we
also saw that the capsules are not perfectly spherical. Their initial state can thus be
characterized by the radius, a, of the sphere which has the same volume and the ratio,
S, between their minimum to maximum lengths (0.86 � S � 0.95). Since these two
imperfections are expected to alter the flow axisymmetry, we have tried to estimate
their importance by performing a series of preliminary tests where two perpendicular
views of the capsule steady shape, one horizontal and the other vertical, were taken.

We first investigate the role of buoyancy by considering the location of the capsule
centre. Figure 3 shows the transverse horizontal coordinate, yg , and the vertical
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Figure 3. Horizontal and vertical locations of the centre of three different capsules as a
function of the bulk fluid velocity: �, a/R = 0.75; �, a/R = 0.80; �, a/R = 0.87.

coordinate, zg , of the centre of three different capsules which have the same elastic
modulus, but different sizes. The origin is located on the tube axis so that yg and
zg measure the capsule off-centring. It is observed that all capsules are centred in
the horizontal direction whatever the flow rate is. This is due to the lubrication
force exerted on the capsule by the thin liquid film around the capsule between the
membrane and the tube wall. Since this hydrodynamic force increases as the film
becomes thinner, the stable position of the capsule centre is on the tube axis in
absence of buoyancy. In the vertical direction, we observe that at low velocity the
capsule centre is under the tube axis. Since the hydrodynamic force is an increasing
function of U , the off-centring is observed to decrease as the flow rate is increased. On
the other hand, when the size ratio a/R increases, the capsule volume increases and
the film thickness decreases, therefore both the hydrodynamic force and the buoyancy
increase. However, the hydrodynamic force increases more quickly than the buoyancy,
so the capsule centring is achieved sooner for large capsules than for small ones. A
complete investigation of the role of buoyancy at low flow velocities would require
us also to take into account the capsule deformability characterized by its elastic
moduli. This is beyond the scope of the present work. From these preliminary tests,
it was possible to conclude that the vertical off-centring was negligible as soon as the
velocity was larger than 5 mm s−1. In the next section, we will present only results for
which the effect of buoyancy is negligible.

We now focus on the effect of the slight non-sphericity of the initial shape. Since the
capsules are slightly over-inflated, the existence of an initial departure from sphericity
implies that the capsule presents either an anisotropic tension in the membrane at
rest or mechanical properties that are non-uniform over the membrane. To check
the importance of this initial anisotropy, let us consider the maximal lengths of the
capsules in axial, Lx , lateral, Ly , and vertical, Lz, directions. Figure 4 presents the
evolution of the maximal lengths against the liquid velocity for two capsules which
have one of the worst sphericity ratios (S = 0.89). Figure 4(a) shows the results
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Figure 4. Maximal dimensions of two capsules, (a) a/R = 0.75 and (b) a/R = 0.87:
�, Lx/2R; �, Ly/2R; �, Lz/2R.

corresponding to the smallest capsule (a/R = 0.75). Note that the initial orientation
of the capsule at the tube entry is not under our control and appears to be random.
However, we observe that at low velocity the largest dimension is always the horizontal
transverse direction (Ly). The smallest and the medium dimensions may be either Lx

or Lz depending on the initial orientation of the capsule. When the velocity increases,
the hydrodynamic forces in the film surrounding the membrane increase and tend to
make the capsule shape axisymmetric. Above a critical velocity, the deformation of the
membrane that is driven by the hydrodynamic stress overcomes the initial anisotropic
tensions (or the non-homogeneity of the elastic moduli) that are responsible for the
initial non-sphericity and then Ly = Lz. This critical velocity is about 15 mm s−1 for
the small capsule presented in figure 4(a), but less than 1.5 mms−1 for the larger
capsule presented in figure 4(b). As for the problem of capsule centring, we observe
that larger the capsule is, the sooner hydrodynamic stresses dominate and the sooner
capsule imperfections can be neglected. The different tests we have carried out showed
that the effect of the initial disparity in sphericity could always be neglected as soon
as the axial length had become the largest one. Beyond this limit, no difference was
observed between the different capsules or for the different initial orientations of a
given capsule; in particular, the buckling transition that occurred at the capsule rear
was not influenced by the initial anisotropy. In the next section, we will present only
results obtained in the horizontal plane (x,y). For a/R larger than 0.8 or capillary
number Ca larger than 0.015, the results are representative of the ideal situation of
initial spherical capsules. (For a/R = 0.75 and Ca � 0.015, the measured transversal
length Ly might be larger than the radial length of a perfectly spherical capsule of
about (1 − S)/2 ≈ 5 %.

Another problem with the capsules is that we did not obtain a complete characterzi-
ation of the properties of their membrane. Only nine of the 28 capsules used in the
present flow experiments have been submitted to compression tests. Moreover, if
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Figure 5. Shape comparisons of two capsules C18 and C15 which have the same size (a/R =
0.83). C18: K = 0.30 Nm−1; (a) U = 4.7 mm s−1, (b) U = 8.5 mm s−1, (c) U = 15.5 mm s−1; C15:
K = 0.55 Nm−1; (a) U = 8.4 mm s−1, (b) U = 15.5 mm s−1, (c) U =28.9 mm s−1.

compression tests provided a fairly accurate determination of the elastic dilation
modulus K , they only led to the conclusion that the shear elastic modulus µ lay
between K/3 and K . We first checked that the present results were consistent with
compression experiments by considering the capsules which had a known elastic
modulus. Figure 5 compares the images and contours of two capsules which have the
same size, but different K . The liquid velocity has been adjusted in order to obtain
the same capillary numbers, Ca = ηextU/K , for the two capsules. Figure 5 shows that
the shapes of the two capsules match very well. Similar comparisons between the
other capsules of known K confirmed that the results were the same provided that Ca
and a/R were the same. If there were any differences in the value of µ, their effect was
not significant. Therefore, the present experiments could be used to characterize the
capsules that had not been subjected to compression tests. Their area dilation modulus
was determined as follows. We chose a reference capsule whose size was the same as
the test capsule whose dilation elastic modulus K had to be measured. Of course, the
reference capsule could not have exactly the same size as the test capsule, but the
maximal difference was less than 2.5 % and comparisons with different capsules of
close sizes allow us to minimize the error introduced by small size differences. Now, let
us denote the liquid velocity corresponding to the reference capsule as Uref and that



Capsule flowing in a narrow tube 161

of the test capsule as Utest . For a given Uref , we searched the value of Utest for which
the shape of the test capsule matched that of the reference capsule. Then, we deduced
the value of K of the test capsule by equating its capillary number with that of the
reference capsule. This method was applied to each velocity Uref for which there was
a velocity Utest allowing the contour matching. Finally, we retained the value of K

that provided the best agreement over all available velocity pairs. Note that each time
an elastic modulus had been determined, the corresponding capsule could be used
as a reference capsule. Thus at the end of the process, many comparisons could be
made, allowing a reliable validation of this method which appeared to be at least as
accurate as the compression method (±5 %).

5. Experimental results
We analyse now the steady states reached by the capsules that flow in the narrow

tube and focus on the effects of the capillary number and size ratio. Figure 6 shows
top-view pictures of the capsules. We selected four size ratios (a/R =0.75, 0.81, 0.87
and 0.94) and various capillary numbers covering the range investigated. The contours
corresponding to each size ratio have been superimposed in figure 7 by using the
capsule front as the origin of coordinates. The evolution of the capsule shape with the
capillary number is qualitatively the same for all size ratios. When Ca is increased,
the capsule extends in the axial direction and contracts in the radial one. To describe
this process in detail, it is useful to distinguish the front, the rear and the intermediate
parts of the capsule. During a first stage, the curvature of the front increases and
the intermediate part lengthens. When increasing Ca further, both the front and
intermediate parts stop evolving. Concerning the capsule rear, initially convex, it
first flattens, becomes concave and then becomes more and more concave as Ca is
increased.

These observations suggest that we should introduce the following parameters for
characterizing the capsule shape: the maximal axial dimension, Lx , and the maximal
lateral one, Ly , the distance Lf r between the front and the rear measured on the axis
of symmetry, the curvature Cf of the front and that of the rear, Cr (see figure 8).
In order to characterize the membrane deformation, it is also useful to measure the
two principal extension ratios of the membrane, in the meridian direction, λm, and in
azimuthal one, λφ . It is not possible to determine their local values since we do not
know the Lagrangian coordinates of each membrane point. We thus introduce the
following global values: 〈λm〉 is the ratio of the measured contour perimeter with the
perimeter of a circle of radius a; 〈λφ〉 = (1 + 〈α〉)/〈λm〉 where 〈α〉 is the area variation
of the membrane relative to its shape at rest.

Figure 9 presents the evolution of all these parameters against the capillary number
for a/R =0.81. Figure 9(a) shows that the axial length Lx is an increasing function
of Ca, which confirms that the larger is the viscous stress, the more stretched is the
capsule. Nevertheless, this general mechanism involves two different stages. As long as
the curvature of the rear remains positive (Ca � 0.03), the capsule becomes narrower
and the curvature of its front increases. The conservation of the capsule volume is
thus ensured by the decrease of Ly that compensates for the increase of Lx . After
the formation of the concave part at the rear of the capsule (Ca > 0.03), Lx goes
on increasing but Ly and the front curvature have reached constant values. On the
other hand, the distance between the capsule front and the capsule rear, Lf r , is then
a decreasing function of Ca. During this second stage, the volume conservation is
then ensured by the concave part at the capsule rear becoming deeper and deeper.



162 F. Risso, F. Collé-Paillot and M. Zagzoule

0.100

0.052 

0.011

0.003

a/R = 0.75 0.81 0.87 0.94

0.020 

0.080

Ca = 0.125

Figure 6. Stationary shapes for different capillary numbers and a/R: a/R = 0.75 capsules C22
(Ca= 0.003) and C13 (Ca = 0.011–0.052); a/R = 0.81 capsules C2 (Ca =0.003–0.0011) and
C17 (Ca= 0.020–0.125); a/R = 0.87 capsules C27 (Ca= 0.003) and C12 (Ca =0.011–0.052);
a/R = 0.94 capsule C6.



Capsule flowing in a narrow tube 163

–4 –3 –2 –1 0
–2

–1

0

1

2
y 

(m
m

)
y 

(m
m

)
a/R = 0.75

Ca = 0.003
0.011
0.020
0.052
0.062

a/R = 0.81

Ca = 0.003
0.020
0.080
0.125

x (mm)

a/R = 0.87

Ca = 0.003
0.011
0.020
0.037
0.052

x (mm)

a/R = 0.94

Ca = 0.003
0.011
0.020

–4 –3 –2 –1 0
–2

–1

0

1

2

–4 –3 –2 –1 0
–2

–1

0

1

2

–4 –3 –2 –1 0
–2

–1

0

1

2

Figure 7. Stationary contours for different capillary numbers and a/R: same capsules
as in figure 6.

Ly

Lx

Rr

Rf

Lfr

Cf = 
1—
Rf

Cr =
1—
Rr

Figure 8. Definition of parameters for shape characterization.

Owing to the axisymmetry, the volume conservation requires that the decrease in
length close to the axis, Lf r , be much larger than the increase in length close to
the tube wall, Lx . This particular process of deformation implies that the membrane
extension ratio in the azimuthal direction remains close to unity although the capsule
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Figure 9. Evolution of the capsule shape as a function of Ca for a/R = 0.81: (a) axial and
lateral dimensions; (b) front and rear curvatures; (c) global extension ratios.

is significantly stretched in the meridian direction (figure 9c). Moreover, it also implies
that the increase of 〈λm〉 with Ca, and so that of the membrane tensions, is more
rapid than the increase of Lx . Finally, we observed that the curvature of the rear
reaches a constant value around Ca =0.08 and the deformation seems to slow down
afterwards.

The process of deformation is similar for all the capsule sizes investigated (0.75 � a/

R � 0.95). In each case, Ly and Cf reach constant final values when Ca becomes large
enough. Figure 10 shows the evolution of the final constant values of the lateral
dimensions Llim

y /2a and of the front radius of curvature Rlim
f /a against a/R. Note that
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both have been normalized by the initial capsule radius. When it is not normalized,
Llim

y /2 (resp. Rlim
f ) regularly increases from 0.71R to 0.83R (resp. from 0.56R to 0.71R)

when a/R is increased from 0.75 to 0.94. Hence, the width of the gap between
the membrane and the wall decreases, and so lubrication force increases, when the
capsule becomes larger. When normalized by a, the final lateral dimension is a
decreasing function of a/R, whereas the radius of curvature of the front becomes
almost independent of a/R, its value lying in the range 0.70–0.75. This indicates that
even if the overall departure from the initial spherical shape increases with a/R, the
deformation of the very front part tends toward an asymptotic state independent of
both Ca and a/R. Figure 10 also presents the capillary numbers, CaLy and CaCf , for
which Llim

y /2 and Rlim
f are reached. The larger a/R is, the smaller CaLy

and CaCf
are.

Even if the deformation process is similar whatever a/R, its successive stages happen
for lower values of Ca when a/R becomes larger.

Figure 11 shows the global extension 〈λm〉 against the capsule size a/R for three
different capillary numbers. Here, we show only the meridian extension ratio since the
azimuthal one remains close to unity in each case. Note that for all the tests performed
in the present study, 〈λm〉 did not exceed 1.2 and the relative membrane area variation
did not exceed 0.23. We checked that the membrane material always remained in the
elastic domain, as could be expected from the results of the compression experiments.
In this regime, we observed that the membrane extension is an increasing function of
both a/R and Ca.

We now analyse the velocity V of the capsule. Figure 12 shows the relative velocity
difference, V/U − 1, against the capillary number for different capsule sizes. Note
that even for a given value of a/R, each plot collects the results from several different
capsules. The fact that the evolutions of the capsule velocity against Ca lie on
reasonably smooth curves confirms that Ca and a/R are the only significant control
parameters for the present experiments. In all cases, the capsule velocity is larger
than the bulk fluid velocity U , but less than the maximal liquid velocity on the axis
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Figure 12. Capsule velocity relative to the bulk liquid velocity. Experiments: �, a/R = 0.75;
�, a/R =0.81; +, a/R = 0.85; �, a/R = 0.94. Numerical simulations by Quéguiner &
Barthès-Biesel (1997): —, a/R = 0.80; – – –, a/R = 0.90. Theory for a rigid spheres by Wang
& Skalak (1969): �, a/R = 0.70; �, a/R = 0.80; �, a/R = 0.90.

2U . The thinner the gap between the membrane and the tube wall is, the slower the
capsule flows, its velocity decreasing towards the bulk liquid velocity. The evolution
of capsule velocity can consequently be qualitatively predicted from what we know
about the capsule deformation. From the observed evolution of Ly , we may indeed
anticipate that V/U − 1 is a increasing function of Ca that tends towards a constant
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value at large capillary numbers and is a decreasing function of a/R. The asymptotic
values of the capsule velocity have only been attained for certain capsule sizes:
(V/U − 1)lim = 0.38 for a/R = 0.81 and (V/U − 1)lim = 0.35 for a/R = 0.85. Figure 12
also shows the numerical results obtained by Wang & Skalak (1969) for rigid spheres
in creeping flow as reference cases for Ca = 0 and those obtained for capsules by
Quéguiner & Barthès-Biesel (1997), which will be commented on in the next section.

6. Discussion
We investigated experimentally the behaviour of initially spherical capsules flowing

in a narrow tube (0.75 � a/R � 0.95) at low to moderate capillary numbers (Ca �
0.125) and observed the following general trends. At low Ca, the capsule is rounded at
both ends. When Ca increases, its length increases, its radial dimension decreases and
its rear flattens. Beyond a certain Ca, the capsule rear becomes concave. Increasing
Ca further, the capsule length still increases and the negative curvature of the rear
goes on decreasing, but its radial dimension reaches a constant value.

In order to determine to what extent the results are specific to the membrane
rheology of the present capsules, we can compare them with other experimental
results obtained with different kinds of capsules. First, consider the case of droplets.
Note that droplets can be considered as capsules which have a particular membrane
rheology, i.e. with isotropic tensions independent of the deformation. There are many
works dealing with droplets flowing in a narrow tube (a/R > 0.7) at low Reynolds
number. We will refer here to the major contributions by Ho & Leal (1975) and
Olbricht & Kung (1992). For droplets, the results do not depend only on the capillary
number and the size ratio, but also on the viscosity ratio. For any fixed ηint/ηext,
the qualitative behaviour at low Ca is similar to what we observed with capsules:
a rounded shape at both ends with a rear that flattens and a length that increases
with increasing Ca. In each case, there exists a critical capillary number, larger than
unity, beyond which breakup occurs. At low ηint/ηext, the rear of the droplet becomes
concave and a finger of the outer liquid penetrates the droplets which eventually break
up. At large ηint/ηext, the droplet is stretched in the axial direction until it ruptures,
the penetration of a finger of outer liquid from the rear also occurs simultaneously
in some cases. Vitkova et al. (2004) investigated lipid vesicles with diameters in the
range 10–70 µm flowing through capillaries. The size ratio a/R was in the range
0.2–1.1 and the viscosity ratio ηint/ηext was close to unity. When increasing the liquid
velocity, the vesicle length and its front curvature increase, whereas the rear curvature
decreases. For large flowing velocities, concave rears were also observed. Lee & Fung
(1969) carried out the experimental study of flexible thin-walled rubber cells, liquid-
filled and geometrically similar to red blood cells. The cells were flowing in a very
viscous silicone oil in order to ensure small Reynolds numbers, despite a cell diameter
larger than 4 cm. The ratio between the cell equatorial radius and that of the tube
was in the range 0.98–1.7. Contrary to droplets and lipid vesicles, these cells were
macroscopic objects with a membrane made of a thin layer of a three-dimensional
material. We may thus expect a membrane rheology closer to the capsules used here.
On the other hand, the initial biconcave shape constitutes an important difference.
The cell was observed to flow sideways with its equatorial plane parallel to the tube
axis. For a/R = 0.98, the cell remained biconcave only at very low velocity. When the
velocity becomes large enough, the membrane buckles either at its trailing edge or
symmetrically with the leading pole moving away from the centre while the trailing
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Figure 13. Comparison between experiments and the numerical simulations for a/R = 0.80.
(a) Simulation by Quéguiner & Barthès-Biesel (1997) for a Mooney–Rivlin membrane;
(b) present experiments with capsule C16.

pole moves toward the centre. Whatever a/R, the cell buckled at large velocity, the
trailing end always buckling inward.

After the pioneering works of Barnard, Lopez & Hellums (1968) and Lighthill
(1968), there were several attempts based on lubrication theory to address the problem
of the flow of red blood cells along narrow vessels. The work of Secomb et al. (1986)
is particularly interesting. They assumed axisymmetric shapes and used lubrication
theory to describe the liquid flow in the gap between the cell and the wall. They
investigated situations with only isotropic membrane tensions and then considered the
effects of shear and bending. They predicted shapes with rounded front and concave
rear in qualitative agreement with those observed experimentally. The fact that the
membrane tension becomes small and even negative in the tail region explained why
concave rears are observed. Moreover, the authors remarked that in the absence of
bending resistance near the rear, the axisymmetric shape was potentially unstable
and might buckle. Quéguiner & Barthès-Biesel (1997) used a boundary integral
method to solve numerically the axisymmetric motion and deformation of capsules
through cylindrical channels. Figure 13 compares our experimental results with their
numerical simulations for a/R = 0.8. Note that the simulations considered a Neo-
Hookean membrane (NH) with negligible bending stiffness. The NH constitutive law
is the simplest version of the Mooney–Rivlin (MR) law and is defined by (2.4) where
Ψ ′ = 0. The NH model hence involves a unique parameter, the surface shear modulus
GMR, or equivalently the Young’s modulus Es = 3GMR. The capillary number used
by Quéguiner & Barthès-Biesel (1997) was Ca = ηextU/Es. Since K0 = 3GMR = Es,
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lines: simulations by Diaz & Barthès-Biesel (2001) for a (ES) membrane with (a) µ/K = 1 or
(b) µ/K = 1/3. Thick lines: present experiments with capsule C28.

the experimental and numerical capillary numbers are the same and the results can
be compared directly. (See Barthès-Biesel, Diaz & Dhenin, 2002, for a thorough
discussion of how results obtained with different constitutive laws can be compared).
Figure 13 shows that if the order of magnitude of the overall deformation is
comparable, the shapes are significantly different. In particular, we observe that
the concave part at the capsule rear is deeper and occurs for a smaller value of Ca in
the simulations than in the experiments. As can be seen in figure 12, these different
shapes induced differences in the capsule velocity. If, at low Ca, experimental and
numerical results are both close to the theoretical solution obtained by Wang &
Skalak (1969) for a solid sphere, they diverge from each other at large Ca. These
differences could be expected since the NH law is not valid for the description of the
membrane of the present capsules. Diaz & Barthès-Biesel (personal communication
2001) performed additional numerical simulations by assuming a membrane material
with constant elastic moduli (ES model). They kindly provided us with some calculated
shapes for a/R = 0.78. Comparisons with experiments were possible for three cases:
Ca =0.016 for µ/K = 1/10, Ca = 0.027 for µ/K =1/3 and Ca = 0.020 for µ/K = 1.
For µ/K =1/10, both the front and the rear parts of the calculated shapes differ
from the experimental ones. On the other hand, figure 14 shows that the shapes
calculated for µ/K =1/3 and 1 matched well the experimental ones at the front and
intermediate parts, but not at the rear where they predicted deeper concave parts.
These results suggest that either the bending stiffness or the initial capsule inflation
may play a crucial role in the behaviour of the capsule rear. First, it is worth recalling
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that small, but non-zero, bending moments are necessary to guarantee the stability
of the observed shapes. In the simulation of Quéguiner & Barthès-Biesel (1997) who
assumed zero bending stiffness, the calculated shape was smoothed at each time step
in order to ensure the stability of the computation. Diaz & Barthès-Biesel (2002)
obtained the same results by considering a very weak bending stiffness. Then, Lac
et al. (2004) investigated numerically different three-dimensional unbounded flows
for various membrane laws with negligible bending resistance. They showed that
buckling instablity occurs each time there are negative membrane tensions. In the
present experiments, this buckling instability did not occur. However, small existing
bending moments do not necessarily influence the capsule shape significantly. By
assuming that the two-dimensional description of the membrane is obtained by
integration of the three-dimensional stresses over the membrane cross-section, the
magnitude, ε, of the ratio between bending and membrane expansion effects is given
by:

ε =
h2C2

α
, (6.1)

where h, C and α are, respectively, the membrane thickness, curvature and relative
area dilation. Using the maximal curvature, which is observed at the trailing edge of
the capsule, and the average area dilation 〈α〉, we find that ε was always less than
2.5 %. This may suggest that membrane bending stiffness probably does not play a
significant role in the global shape of the capsule. Nevertheless, we cannot be sure
that it is true everywhere since tensions may vanish at the capsule rear. Since the
local deformations are unknown, the fact that the global ratio between bending and
membrane expansion effects is small has to be considered with caution.

On the other hand, the existence of initial positive tensions may delay the
occurrence of negative tensions and thus also prevents membrane buckling. Numerical
simulations of a capsule with an STZC membrane (Lefebvre & Barthès-Biesel 2005)
indeed show that negative curvatures at the capsule rear are reduced when initial
inflation is taken into account. We know from Sherwood et al. (2003) that the
present capsules are initially slightly over-inflated. For all the results presented here,
the initial isotropic inflation, λi , was approximately 1.045. To check the influence
of this parameter we carried out some additional tests with capsules which were
previously immersed in solutions of different salt concentrations. Figure 15 compares
the front and rear curvatures for three capsules of the same size (a/R = 0.75), but
with different initial inflations (λi =1.025, 1.045 and 1.075). It is remarkable that
the measured front curvatures are independent of the initial inflation over the whole
range of Ca investigated. On the other hand, the rear curvature is also independent of
λi up to Ca =0.025 where concave parts start to be observed at the capsule rear. Note
that the adjustment of the initial inflation required several additional manipulations
during which we did not manage to avoid totally the deposition of a few dust particles
on the membrane. If that does not disturb the detection of the convex parts of the
capsule contour, this complicates the detection of concave ones (see § 3 and figure 2).
For that reason, the negative measured curvatures are not accurate enough to allow
a reliable comparison between the three cases.

We presented here an extensive experimental investigation of the steady state of
a capsule flowing in a narrow tube in the Stokes regime. The experimental model is
representative of an initially slightly over-inflated spherical capsule which is made of
a Newtonian drop surrounded by a two-dimensional elastic membrane with constant
elastic moduli. The general trends are in qualitative agreement with those observed
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the same size (a/R = 0.75), but different initial inflation: �, aCr and �, aCf for λi = 1.025; �,
aCr and �, aCf for λi = 1.045; �, aCr and �, aCf for λi =1.075.

experimentally with similar objects as droplet or lipid vesicles, or numerically with
capsules. The prediction of numerical simulations, however, differ quantitatively from
the experiments since either a different membrane two-dimensional mechanical law
was used or the initial pre-inflation was not considered. The results seem to show
that if the membrane rheology controls the whole capsule shape, the initial over-
inflation mainly influences the capsule rear. Additional numerical simulations taking
into account the initial inflation are now necessary to understand the mechanisms
that control the capsule rear and make the capsule width reach an asymptotic value
at large capillary number.
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